POLYGONS

A polygon is a two dimensional closed figure formed with straight lines.

Sides, vertices and diagonals:

The line segments forming a polygon are called its sides.
The meeting point of a pair of sides is called its vertex.
Any two sides with a common end point are called adjacent sides of the polygon.

The end points of the same side of the polygon are called adjacent vertices.

The line segments joining the non-adjacent vertices are called diagonals.

Some well known polygons are:

No. of sides	Name of polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

Convex Polygon: Each angle of a polygon is less than 180°.
Concave Polygon: Atleast one angle of a polygon is greater than 180°.
Regular Polygon: All sides and angles of the polygon are equal.
Irregular Polygon: Sides and angles of the polygon may not be equal.

Theorems:

- The sum of interior angles of a convex polygon $=(2 n-4) \times 90^{\circ}$.
\rightarrow The sum of exterior angles of a convex polygon $=360^{\circ}$.
Some important results:
- Each interior angle of a regular polygon $=\frac{(\mathrm{n}-2) \times 180^{\circ}}{\mathrm{n}}$, where $\mathrm{n}=$ number of sides of the polygon.
- Each exterior angle of a regular polygon $=\left(\frac{360}{\text { Number of sides }}\right)^{\circ}$.

Each interior angle $=180^{\circ}-($ exterior angle $)$

- Number of diagonals of a polygon having n sides $=\frac{n(n-3)}{2}$.

