Mean Deviation

Mean Deviation for Individual data

$$M.D.(\overline{x})$$
 (Mean Deviation about Mean) = $\frac{\sum |x_i - \overline{x}|}{n}$,

M.D.(M) (Mean Deviation about Median) =
$$\frac{\sum |x_i - M|}{n}$$

Mean deviation for Discrete data

$$\text{M.D.}(\overline{x}) \text{ (Mean Deviation about Mean)} = \frac{\sum f_i \left| x_i - \overline{x} \right|}{N},$$

$$\text{M.D.(M)} \, (\text{Mean Deviation about Median}) = \frac{\sum f_i \left| x_i - M \right|}{N}, \quad \text{Where } \, N = \sum f_i$$

Mean deviation for Continuous data

M.D.
$$(\overline{x})$$
 (Mean Deviation about Mean) = $\frac{\sum f_i |x_i - \overline{x}|}{N}$,

$$M.D.(M) \, (Mean \, Deviation \, about \, Median) = \frac{\sum f_i \left| x_i - M \right|}{N}$$

Where $N = \sum f_i$ and x_i is the class mark of ith class interval.