COMPLEX NUMBERS

A number of the form $\mathrm{a}+\boldsymbol{i} \mathrm{b}$, where a and b are real numbers and $\boldsymbol{i}=$ $\sqrt{-1}$, is known as complex number, so
$C=\{z=a+i b ; a$ and b are real numbes and $i=\sqrt{-1}\}$
Here, ' a ' is called real part of z and ' b ' is called imaginary part of z.

Powers of iota:

$$
\begin{aligned}
& \boldsymbol{i}=\sqrt{-1}, \boldsymbol{i}^{2}=\sqrt{-1} \times \sqrt{-1}=-1, \boldsymbol{i}^{3}=\boldsymbol{i}^{2} \times \boldsymbol{i}=(-1) \times \boldsymbol{i}=-\boldsymbol{i}, \\
& \boldsymbol{i}^{4}=\boldsymbol{i}^{2} \times \boldsymbol{i}^{2}=(-1) \times(-1)=1
\end{aligned}
$$

In general, we have

$$
\boldsymbol{i}^{4 k}=1, \boldsymbol{i}^{4 k+1}=\boldsymbol{i}, \boldsymbol{i}^{4 k+2}=-1, \boldsymbol{i}^{4 k+3}=-\boldsymbol{i}
$$

Algebra of Complex Numbers:

If $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ are any two complex numbers, then

(i) Addition of complex numbers:

$$
\begin{aligned}
z_{1}+z_{2} & =\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right) \\
& =\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)
\end{aligned}
$$

(ii) Difference of complex numbers:

$$
\begin{aligned}
z_{1}-z_{2} & =\left(a_{1}+i b_{1}\right)-\left(a_{2}+i b_{2}\right) \\
& =\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right)
\end{aligned}
$$

(iii) Multiplication of complex numbers:

$$
\begin{aligned}
z_{1} z_{2} & =\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)
\end{aligned}
$$

Modulus of Complex number:

$t z=a+i b$ be a complex number. Then modulus of z, denoted as $|z|$, is given by $|z|=\sqrt{a^{2}+b^{2}}$

Properties of Modulus:
(i) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(ii) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|},\left|z_{2}\right| \neq 0$

Conjugate of a complex number:
Let $z=a+i b$ be a complex number. Then conjugate of z, denoted as z, is given $\operatorname{by} \bar{z}=a-i b$

Properties of Conjugate:

(i) $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
(ii) $\overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{2}}$
(iii) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}} ; z_{2} \neq 0$

Multiplicative Inverse of a Complex number:
Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ be a complex number. Then multiplicative inverse of z , denoted as z^{-1}, is given by

$$
z^{-1}=\frac{1}{z}=\frac{1}{a+i b}=\frac{1}{a+i b} \times \frac{a-i b}{a-i b}=\frac{a-i b}{a^{2}+b^{2}}=\frac{\bar{z}}{|z|^{2}}
$$

Square roots of a complex number:
Let $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ be a complex number. Then square root of z , is given
by $\sqrt{\mathrm{z}}=\left(\frac{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}+\mathrm{a}}{2}\right)^{\frac{1}{2}} \pm \mathrm{i}\left(\frac{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}-\mathrm{a}}{2}\right)^{\frac{1}{2}}$

Polar form of a Complex number:
The polar form of a complex number $z=a+i b$ is given by $z=r(\cos \theta+i \sin \theta)$, where $r=\sqrt{a^{2}+b^{2}}, \cos \theta=\frac{a}{r}$ and $\sin \theta=\frac{b}{r}$.

Here, θ is known as argument of z and is denoted as ($\arg \mathrm{z}$).
The value of θ, such that $-\pi<\theta \leq \pi$, is called the principal argument of z and is denoted as $(\operatorname{Arg} \mathrm{z})$.

