Binomial theorem:

The expansion of $(a+b)^{n}$ for any positive integer n is given by Binomial Theorem, which is

$$
(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots . .+{ }^{n} C_{n-1} a^{1} b^{n-1}+{ }^{n} C_{n} b^{n}
$$

Useful Terms:

1. Binomial Coefficients: The coefficients ${ }^{n} C_{r}$ occurring in the Binomial Theorem are called Binomial coefficients.
2. Pascal's triangle: The binomial coefficients of the expansions are arranged in an array. This array is called Pascal's triangle.

3. General Term: The general term of an expansion $(a+b)^{n}$ is $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
4. Middle term/terms in the expansion of $(a+b)^{n}$:
(i) If n is even, then the given expansion has only one middle term which is given by $\left(\frac{n}{2}+1\right)^{\text {th }}$ term.
(ii) If n is odd, then the given expansion has two middle terms, namely

$$
\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }} \text { term and }\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }} \text { term. }
$$

5. The $r^{\text {th }}$ term from the end :
$r^{\text {th }}$ term from the end of $(a+b)^{n}=r^{\text {th }}$ term from the beginning of $(b+a)^{n}$.

6. Properties of Binomial Coefficients:

i. Sum of the binomial coefficients is equal to 2^{n}

$$
{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots \ldots \ldots \ldots .+{ }^{n} C_{n}=2^{n}
$$

ii. The sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to 2^{n-1}.

$$
{ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{4}+{ }^{\mathrm{n}} \mathrm{C}_{6} \ldots \ldots . .={ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{3}+{ }^{\mathrm{n}} \mathrm{C}_{5}+{ }^{\mathrm{n}} \mathrm{C}_{7} \ldots \ldots . .=2^{\mathrm{n}-1}
$$

